Asymmetric exclusion process with next-nearest-neighbor interaction: some comments on traffic flow and a nonequilibrium reentrance transition

نویسندگان

  • Antal
  • Schutz
چکیده

We study the steady-state behavior of a driven nonequilibrium lattice gas of hard-core particles with next-nearest-neighbor interaction. We calculate the exact stationary distribution of the periodic system and for a particular line in the phase diagram of the system with open boundaries where particles can enter and leave the system. For repulsive interactions the dynamics can be interpreted as a two-speed model for traffic flow. The exact stationary distribution of the periodic continuous-time system turns out to coincide with that of the asymmetric exclusion process (ASEP) with discrete-time parallel update. However, unlike in the (single-speed) ASEP, the exact flow diagram for the two-speed model resembles in some important features the flow diagram of real traffic. The stationary phase diagram of the open system obtained from Monte Carlo simulations can be understood in terms of a shock moving through the system and an overfeeding effect at the boundaries, thus confirming theoretical predictions of a recently developed general theory of boundary-induced phase transitions. In the case of attractive interaction we observe an unexpected reentrance transition due to boundary effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION

In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...

متن کامل

GCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system

We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction)   model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1,  HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...

متن کامل

A ug 2 00 6 Nonequilibrium stationary states with Gibbs measure for two or three species of interacting particles

We construct explicit examples of one-dimensional driven diffusive systems for two and three species of interacting particles, defined by asymmetric dynamical rules which do not obey detailed balance, but whose nonequilibrium stationary-state measure coincides with a prescribed equilibrium Gibbs measure. For simplicity, the measures considered in this construction only involve nearest-neighbor ...

متن کامل

Gibbsian nonequilibrium stationary states for two or three species of interacting particles

We construct explicit examples of one-dimensional driven diffusive systems for two and three species of interacting particles, defined by asymmetric dynamical rules which do not obey detailed balance, but whose nonequilibrium stationary states coincide with a prescribed equilibrium Gibbsian state. For simplicity, the states considered only involve nearest-neighbor interactions. For two species,...

متن کامل

Collapse transition of a square-lattice polymer with next nearest-neighbor interaction.

We study the collapse transition of a polymer on a square lattice with both nearest-neighbor and next nearest-neighbor interactions, by calculating the exact partition function zeros up to chain length 36. The transition behavior is much more pronounced than that of the model with nearest-neighbor interactions only. The crossover exponent and the transition temperature are estimated from the sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 1 Pt A  شماره 

صفحات  -

تاریخ انتشار 2000